Jianlong Feng, Hans von Storch, Ralf Weisse, Wensheng Jiang (2016): Changes of storm surges in the Bohai Sea derived from a numerical model simulation, 1961–2006. Ocean Dynamics, Volume 66, pp 1301–1315, doi:10.1007/s10236-016-0986-3


Using the tide-surge circulation model ADCIRC, the storm surges in the Bohai Sea were hindcasted from 1961 to 2006 after a regional model-based reconstruction of wind conditions. Through comparison with four storm surge cases that happened in the Bohai Sea and long-time observations at four tide gauges in the Yellow Sea, it is concluded that the model is capable of reproducing the conditions of storm surges in the past few decades in this area. The spatial distribution, the seasonal variation, the interdecadal variability, and the long-time trend were analyzed using the model results. Results show that the storm surges in the three bays of the Bohai Sea are more serious than those in other areas. The storm surges exhibit obvious seasonal variations—they are more serious in spring and autumn. Obvious interdecadal variations and long-time decreasing trends take place in the Bohai Sea. Storm surge indices show statistically significant negative correlations to the Arctic Oscillation (AO) and a statistically significant positive correlation to the Siberian High (SH). Linear regression analysis was used to determine a robust link between the indices of the storm surges and the AO and SH. Using this link, conditions of the storm surges from 1900 to 2006 were estimated from the long-time AO and SH.


Feng, J., H. von Storch, W. Jiang, and R. Weisse (2015): Assessing changes in extreme sea levels along the coast of China. J. Geophys. Res. Oceans, 120, 8039–8051, doi:10.1002/2015JC011336


Hourly tide-gauge data along the coast of China are used to evaluate changes in extreme water levels in the past several decades. Mean sea level, astronomical tide, nontidal component and the tide-surge interaction was analyzed separately to assess their roles in the changes of extreme sea levels. Mean sea level at five tide gauges, Kanmen, Keelung, Zhapo, Xiamen and Quarrybay, show significant increasing trends during the past decades (1954–2013) with a rate of about 1.4–3.5 mm/yr. At Keelung, Kaohsiung and Quarrybay the mean high waters increased during 1954–2013 with a rate from 0.6 to 1.8 mm/yr, while the annual mean tidal range rose at the same time by 0.9 to 3.8 mm/yr. In terms of storm surge intensities, there is interannual variability and decadal variability but five tide gauges show significant decreasing trends, and three gauges, at Keelung, Xiamen and Quarrybay, exhibited significant increases of extreme sea levels with trends of 1.5–6.0 mm/yr during 1954–2013. Significant tide-surge interactions were found at all 12 tide gauges, but no obvious change was found during the past few decades. The changes in extreme sea levels in this area are strongly related to the changes of mean sea levels (MSL). At gauges, where the tide-surge interaction is large, the astronomic tides are also an important factor for the extreme sea levels, whereas tide gauges with little tide-surge interaction, the changes of wind driven storm surge component adds to the change of the extreme sea levels.

Die Kommentarfunktion ist geschlossen.